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Abstract

We describe Fourier pseudospectral time-domain simulations, carried out in order to study light interacting with a
metallic nanoscale object. The difficulty of using Fourier methods to accurately predict the electromagnetic scattering
in such problems arises from the discontinuity in the dielectric function along the surface of the metallic object. Standard
Fourier methods lead to oscillatory behavior in approximating solutions that are nonsmooth or that have steep gradients.
By applying the Gegenbauer reconstruction technique as a postprocessing method to the Fourier pseudospectral solution,
we successfully reduce the oscillations after postprocessing.

Our computational results, including comparison with finite-difference time-domain simulations, demonstrate the effi-
ciency and accuracy of the method.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Metallic nanostructures, such as metal nanoparticles and nanoholes in thin metal films, are of considerable
interest because of the possibility of creating surface plasmon excitations when interacting with light [2,23].
Surface plasmons are collective electronic excitations that effectively concentrate and confine light energy
[4]. The manipulation of surface plasmons could lead to novel nanoscale optoelectronic devices.

Numerical simulations help us to understand and predict the basic physics of such nanophotonics problems
and also provide cost-effective tools for prototyping design of potential devices. Among general computational
techniques employed in such simulations, Fourier methods have been naturally considered for problems with
periodic features, such as planar waveguides and photonic crystal structures for integrated photonic devices.
Computational implementations and their error estimates have been analyzed in the literature [9,26]. In this
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paper, we show how such Fourier methods can be applied to light interacting with metal nanostructures that
do not possess periodic features. Our focus is on mathematical reconstruction techniques for Fourier
pseudospectral simulation data for which one might consider Fourier–Padé or Gegenbauer approximations
[6,16,24,26,27].

As a first step, we study light interacting with a small metallic cylinder or nanowire of diameter of 50 nm
and infinite length in a vacuum. Before presenting detailed mathematical formulae, we give a brief overview of
the mechanism behind surface plasmon excitation in such a system. Imagine the circular cross-section of the
nanowire to be in the x–y plane with its long axis parallel to the z-axis. Incident light traveling along the x-axis
with y-polarization is then capable of inducing dipolar (and higher-order) charge oscillations near the metal
surfaces. These charge oscillations are associated with collective excitations of electrons near the metal sur-
faces and can lead to electromagnetic surface waves that are highly localized (evanescent) near surfaces,
namely, surface plasmons. A complex-valued dielectric constant is used to describe the metallic response to
radiation. More detailed analysis shows that this dielectric constant must have a negative real part for surface
plasmons to be reasonably excited. Absorption of radiation by the metal can also occur, which involves intro-
ducing an imaginary part to the dielectric constant. In addition to being highly localized, the field intensities of
surface plasmon excitations can be extremely large near the metal surfaces.

Many approaches exist for solving the relevant Maxwell�s wave equations. In this paper we are concerned
with time-domain methods that involve grids in space and time. The advantages of such methods include con-
ceptual simplicity and the ability to model a variety of complex system architectures. The most popular time-
domain approach is the finite-difference time-domain (FDTD) method [31,30]. It involves low-order finite
differencing to accomplish both spatial and time derivatives. In order to describe surface plasmon behavior
accurately, however, very fine grids in both space and time are required. An alternative to FDTD that can
lead to better accuracy with larger grid spacings would be to evaluate the spatial derivatives with Fourier
methods. Such pseudospectral time-domain (PSTD) methods have been proposed and studied in the context
of nonplasmonic systems [21,27]. However the abrupt, sharp changes in magnitudes of the electromagnetic
fields near the metal surfaces as a result of surface plasmons is problematic for PSTD methods. In particular,
nonphysical oscillations, called Gibbs oscillations, can occur that contaminate the solution over a wide range
of coordinate space. However, the finite Fourier data contains enough information about the original solution
that one can reexpress the data as a Padé or Gegenbauer finite expansion and can thus reduce the oscillations.
In both cases, the reconstructions require obtaining the coefficients for the reconstructed approximations in
terms of the Fourier coefficients. Implementations with Fourier–Padé reconstructions in [26] have successfully
reduced the oscillations for Fourier pseudospectral solutions of nonlinear partial differential equations such as
Burgers� and Boussinesq equations.

Here, we apply the Gegenbauer reconstruction to Fourier pseudospectral time-domain simulations [21] of
Maxwell�s equations. The computational results show that the Gegenbauer reconstructions successfully reduce
the noise in the Fourier pseudospectral simulations.

This paper is organized as follows. Section 2 gives the formulation of Maxwell�s equations and the auxiliary
differential equation [18,30] for the current term from the Drude model. Section 3 presents our numerical
discretizations in space and time and the setup of parameters for PSTD simulations. Section 4 introduces
cost-effective Gegenbauer reconstructions in one and two dimensions as postprocessing methods for PSTD
solutions. Their convergence behaviors are demonstrated for some piecewise analytic functions in one dimen-
sion. CPU times for simulations are also discussed. Section 5 demonstrates the PSTD solutions from the nano-
particle scattering simulations and their postprocessed results. FDTD results computed on very finer grids are
also provided for comparison with reconstructed results. Section 6 discusses the remaining issues concerning
computational automation, with an appropriate error estimate for reconstructed solutions varying with free
parameters. Section 7 briefly summarizes our research.

2. Maxwell�s equations for metal nanoparticles

We consider the electrodynamics of metal nanosystems, such as those in [2,4,18,19,23], which are composed
of (nonmagnetic) metals and dielectric materials. The frequency-domain Maxwell�s equations for the electric
and magnetic field vectors, ~E and ~H , may then be taken to be [4]:
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� ix~�~E ¼ r� ~H ; ð1Þ
ixl0

~H ¼ r� ~E; ð2Þ
where x is the temporal frequency and l0 is the magnetic permeability. Each specific system is defined by the
spatial and frequency dependence of the dielectric constant ~�. Dielectric regions of space can often be de-
scribed by a positive, real, and frequency-independent dielectric constant. Metallic regions involve a generally
complex-valued frequency-dependent dielectric constant. Moreover, the real part of the metallic dielectric
constant can be negative, an essential feature for surface plasmon behavior. This latter property can lead
to instability in naive time-domain formulations of Eq. (1).

To address the difficulties noted above, we implement a Drude model [4] of the metallic dielectric constant
within an auxiliary differential equation approach [30], as outlined in more detail in [18]. For metallic regions,
we first reexpress ~� ¼ �0�p as
~� ¼ �0½�1 þ ð�p � �1Þ�; ð3Þ

where �0 is the permittivity of free space, �1 is the infinite frequency value for the dielectric constant, and �p
will be specified later. Identifying the current density as
~J ¼ �ix�0ð�p � �1Þ~E; ð4Þ

we rewrite Eq. (1) as
~J � ix�0�1~E ¼ r� ~H . ð5Þ

Inverse Fourier transforming (5) gives
JðtÞ þ �0�1
oEðtÞ
ot

¼ r� HðtÞ. ð6Þ
The following is the Drude model [4,18,30] for the optical properties of a free-electron metal:
�p ¼ �1 �
x2

p

x2 þ iCpx
; ð7Þ
where Cp is the Drude damping coefficient and xp is the plasmon frequency. This leads to
o
2JðtÞ
ot2

þ Cp
oJðtÞ
ot

¼ �0x
2
p

oEðtÞ
ot

. ð8Þ
Reducing the order of the ordinary differential equation, we have
oJðtÞ
ot

þ CpJðtÞ ¼ �0x
2
pEðtÞ. ð9Þ
Equipped with Eq. (9) for the current term, we define the governing time-domain equations as:
�
oE
ot

¼ r� H � J ; ð10Þ

l
oH
ot

¼ �r� E; ð11Þ

oJ
ot

¼ aJ þ bE; ð12Þ
where the phenomenological parameters in free space are:
� ¼ �0; l ¼ l0; a ¼ 0; and b ¼ 0 ð13Þ

and in the metallic region are:
� ¼ �0�1; l ¼ l0; a ¼ �Cp; and b ¼ �0x
2
p. ð14Þ
The values for the coefficients �1, Cp, and xp can be obtained from fits of experimental dielectric information
[18].
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The electromagnetic field vectors and the current vector are generally written by decomposing each com-
ponent as follows:
E ¼ ðEx;Ey ;EzÞ; H ¼ ðHx;Hy ;HzÞ; J ¼ ðJx; Jy ; J zÞ. ð15Þ

Here, we consider the transverse-electric mode in two dimensions:
E ¼ ðEx;Ey ; 0Þ; H ¼ ð0; 0;HzÞ; and J ¼ ðJx; Jy ; 0Þ. ð16Þ

Then the governing equations (10) and (11) are written as
oF
ot

¼ A
oF
ox

þ B
oF
oy

þ CF ; ð17Þ
where the field vector is F = [Ex,Ey,Hz,Jx,Jy]
T and the coefficient matrices are:
A ¼

0 0 0 0 0

0 0 � 1
�

0 0

0 � 1
l 0 0 0

0 0 0 0 0

0 0 0 0 0

2
666664

3
777775; B ¼

0 0 1
�

0 0

0 0 0 0 0
1
l 0 0 0 0

0 0 0 0 0

0 0 0 0 0

2
666664

3
777775; and C ¼

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

bx 0 0 ax 0

0 by 0 0 ay

2
666664

3
777775.
One can check the well-posedness of this formulation. Eq. (12) contains no spatial derivatives, and hence it is
indeed an ODE for J. After the undifferentiated terms in Eq. (17) are dropped, it becomes a 3 · 3 Maxwell
system. One can symmetrize it through the following change of variables [17]:
G ¼ ðEx;Ey ;
ffiffiffiffiffiffiffi
l=�

p
HzÞ. ð18Þ
Thus, the system is symmetric hyperbolic and therefore strongly well-posed [8].

3. Numerical scheme

Let us define the computational domain on [0,Lx] · [0,Ly], where Lx = 1024 nm and Ly = 512 nm. The grid
points are defined by
xi ¼
Lxi
Nx

ði ¼ 0; . . . ;Nx � 1Þ and yj ¼
Lyj
Ny

ðj ¼ 0; . . . ;Ny � 1Þ. ð19Þ
Consider a metal cylinder with radius 25 nm whose center is placed at x = 767.5 nm and y = 255.5 nm in the
computational domain (see Fig. 1). The parameters of the equations in (14) for the metallic region are chosen
as �1 = 8.926, Cp = �3.08 · 1014 Hz, and xp = 1.7577 · 1016 Hz, as in [18,19]. Since we simulate infinite-space
solutions on a finite computational domain, we introduce an artificial absorbing layer in order to absorb field
components that approach the boundaries. The thickness of the absorbing layer is set to 28 and 40 nm in the
x- and y-direction, respectively. We use the uniaxial perfectly matched layer (UPML) formulation [28,30]; in
this region the field intensity vanishes as it reaches to the boundary of the computational domain. Thus, it is
reasonable to consider this problem as a periodic problem and to apply Fourier approximations globally in the
computational domain.

The pseudospectral time-domain (PSTD) scheme [13,14] we use involves second-order explicit leap-
frogging in time, just as ordinary FDTD, but replaces the spatial derivatives by the Fourier pseudospectral dif-
ferentiation operators, denoted byDx andDy below. At the time level tn = nDt, our scheme is written as follows:
��
�Enþ1

2
x � �En�1

2
x

Dt
¼ Dy

�Hn
z � �Jn

x ; ð20Þ

��
�Enþ1

2
y � �En�1

2
y

Dt
¼ �Dx

�Hn
z þ �Jn

y ; ð21Þ

�l
�Hnþ1

z � �Hn
z

Dt
¼ Dy

�Enþ1
2

x � Dx
�Enþ1

2
y ; ð22Þ
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Fig. 1. Schematic depiction of the computational domain on [0,1024] · [0,512] nm2.
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�Jnþ1

x � �Jn
x

Dt
¼ �a

�Jnþ1

x þ �Jn
x

2
þ �b�Enþ1=2

x ; ð23Þ

�Jnþ1

y � �Jn
y

Dt
¼ �a

�Jnþ1

y þ �Jn
y

2
þ �b�Enþ1=2

y ; ð24Þ
where the vector representations of the fields and parameters are defined, respectively, by:
�En
x ¼ ½ðExÞ00; ðExÞ10; . . . ; ðExÞij; . . . ; ðExÞNx�1Ny�1�

T for ðExÞij ¼ Exðxi; yjÞ; ð25Þ
�� ¼ ��ij ¼ �ðxi; yjÞ; �a ¼ �aij ¼ aðxi; yjÞ and �b ¼ �bij ¼ bðxi; yjÞ ð26Þ
and the spatial derivatives represent Dx ¼ I � D̂x and Dy ¼ D̂y � I using the tensor product � defined in [5],
where D̂x and D̂y are the one-dimensional differentiation matrices of sizes Nx · Nx and Ny · Ny, respectively,
whose components are defined in physical space as in [13]. Of course, in practice, fast Fourier transforms are
used to effectively evaluate the action of these matrices on vectors. Note that a common, evenly spaced non-
staggered spatial grid is assumed for all field variables, which is simpler than the FDTD/Yee [31] gridding
scheme.

In our problem configuration, the solution is piecewise smooth as a result of the discontinuity in the dielec-
tric function along the interface of the cylinder. Hence, we cannot obtain an accurate approximate solution
with the standard Fourier pseudospectral method (20)–(24), although that is a good method for analytic
and periodic functions. The numerical solutions obtained by the standard Fourier pseudospectral time-
domain simulations are obscured by oscillations arising from the Gibbs phenomenon. However, one can
recover accurate solutions by postprocessing techniques such as Fourier–Padé [6,27] and Gegenbauer postpro-
cessing [16,24]. In the following section, we introduce a cost-effective Gegenbauer reconstruction technique as
a postprocessing method and use it to increase the order of accuracy for our PSTD solutions by resolving the
nonphysical oscillations.

4. Gegenbauer postprocessing

Gegenbauer reconstruction [13] requires a priori knowledge of the location of the discontinuity. In the pres-
ent application, the discontinuity location, which arises from the jump in dielectric function, is specified as part
of the problem definition, and Gegenbauer reconstruction is therefore appropriate.

We briefly revisit the prototype problem of Gibbs oscillation. Consider a nonperiodic analytic function f(x)
in [�1,1]. Now, assume that the point values f(xj), where xj = 2j/N, j = 0, . . . ,N � 1, are known but the func-
tion f(x) is not. This is equivalent to knowing the first N discrete Fourier coefficients ~f k, �N/2 6 k 6 N/2 � 1,
of the function f(x) defined by
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~f k ¼
XN�1

j¼0

f ðxjÞe�ipkxj . ð27Þ
Then the classical Fourier sum
fN ðxÞ ¼
XN=2�1

k¼�N=2

~f ke
ipkx ð28Þ
reconstructs the point values everywhere in �1 6 x 6 1.
The finite Fourier expansion converges exponentially as N increases when the approximated function is

analytic (i.e., infinitely smooth) and periodic [14]. If f(x) is either discontinuous or nonperiodic, however, then
fN(x) is not a good approximation to f(x). Away from the discontinuity or the boundary, the convergence is
only Oð1NÞ, and there is an overshoot close to the discontinuity or the boundary that does not diminish with
increasing N [14]; this is referred to as the Gibbs phenomenon [12]. The phenomenon manifests itself in many
situations, including the problem we present in this paper.

Gottlieb et al. showed in a series of papers that, knowing the first N Fourier coefficients, one can recon-
struct a rapidly converging series based on the expansions in Gegenbauer polynomials (see [16] for references).
The point values of f(x) everywhere in �1 6 x 6 1 can be recovered with exponential accuracy in the maxi-
mum norm up to the discontinuity or the boundary.

The Gegenbauer series for the function f(x), based on the Gegenbauer polynomials Ca
nðxÞ, which are

orthogonal over the range x 2 [�1,1] with the weight function ð1� x2Þa�
1
2 for any constant aP 0, is defined by
f ðxÞ ¼
X1
n¼0

b̂
a

nC
a
nðxÞ; ð29Þ
where the continuous Gegenbauer coefficient is defined by
b̂
a

n ¼
1

han

Z 1

�1

ð1� x2Þa�
1
2Ca

nðxÞf ðxÞdx ð30Þ
with the normalization constant
han ¼ p
1
2Ca

nð1Þ
Cðaþ 1

2
Þ

CðaÞðnþ aÞ and Ca
nð1Þ ¼

Cðnþ 2aÞ
n!Cð2aÞ . ð31Þ
The finite sum of the first M + 1 terms of the Gegenbauer expansion in (29), denoted by
gaMðxÞ ¼
XM
n¼0

b̂
a

nC
a
nðxÞ; ð32Þ
converges exponentially to an analytic function f(x) in [�1,1]. The convergence rate of the infinite series
depends on the rate of decay in the magnitude of the coefficients.

In practice, the continuous coefficients b̂
a

n must be computed; they are computed in a discrete sense. Assume
that we are given only an approximation of f(x), the Fourier pseudospectral data, in our problem. It was
shown that the Fourier finite expansion (28) can be used to approximate b̂

a

n. Now we define the discrete Ge-
genbauer coefficients ban, instead of the continuous Gegenbauer coefficients b̂

a

n, by substituting f(x) by fN(x) in
(30). Then the discrete Gegenbauer finite expansion is expressed as
gaM ;N ðxÞ ¼
XM
n¼0

banC
a
nðxÞ; ð33Þ
where the discrete Gegenbauer coefficients are defined by using fN(x) as follows:
ban ¼
1

han

Z 1

�1

ð1� x2Þa�
1
2Ca

nðxÞfN ðxÞdx. ð34Þ
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In fact, one can represent the discrete Gegenbauer coefficient in terms of the discrete Fourier coefficients. Plug-
ging (28) into (34), one obtains
ban ¼
XN2�1

k¼�N
2

~f k
1

han

Z 1

�1

ð1� x2Þa�
1
2Ca

nðxÞeipkx dx
� �

; ð35Þ
where the integration part has an explicit form [3] for k 6¼ 0 as
1

han

Z 1

�1

ð1� x2Þa�
1
2Ca

nðxÞeipkx dx ¼ CðaÞ 2

kp

� �a

inðnþ aÞJnþaðkpÞ; ð36Þ
where C(x) is the gamma function and Jn(x) is the Bessel function of first kind. For k = 0, one uses the orthog-
onal property of the Gegenbauer polynomials. Thus, we have
ban ¼ ~f 0d0n þ
XN2�1

k¼�N
2 ;k 6¼0

~f kCðaÞ
2

kp

� �a

inðnþ aÞJnþaðkpÞ. ð37Þ
A rigorous proof of the exponential convergence of the Gegenbauer approximation (33) to an analytic func-
tion f(x) is shown in [15,16]. Note that, for a fixed a and N, the approximation gaM ;N converges to fN(x) as M
increases to infinity, which is not the desired result. Rather, one must consider simultaneous variations in M,
a, and N to achieve the exponential convergence.

In applications, the number of Fourier coefficients, N, is fixed. Thus, a and M are free parameters to be
chosen depending on N and on the size of each subdomain. The optimum relation between the parameters
and other factors has been analyzed analytically in [16]. However, these analytical results are not sufficient
for providing a practical algorithm. There is also the need for further numerical experimentation. For this pa-
per we carry out a variety of calculations and, based on our empirical observations (Section 5), present some
rough guidelines for parameter choices.

In the following sections, we discuss the detailed procedures in one dimension and two dimensions.

4.1. Reconstructions in one dimension

Consider a piecewise analytic function f(x) that is integrable in [0,L]. Suppose that f(x) has known discon-
tinuities at x = d0 and x = d1 in [0,L]. Then we divide the global domain into three subdomains, denoted by
X1 = [0,d0], X2 = [d0,d1], and X2 = [d1,L], and carry out the Gegenbauer reconstruction in each subdomain.
First, we define a set of grids in the global domain defined by xj = Lj/N, j = 0,1, . . . ,N � 1 and assume that
the point values f(xj) (j = 0,1, . . . ,N � 1) are given. Then we obtain the Fourier coefficients ~f kð� N

2
6

k 6
N
2
� 1Þ by applying a discrete fast Fourier transform, so that the classical Fourier finite sum everywhere

in [0,L] is defined by
fN ðxÞ ¼
XN2�1

k¼�N
2

~f ke
i2pkL x. ð38Þ
Let us denote a subdomain by Xs = [a,b] and define a local variable, for n 2 [�1,1], xs ¼ ðb�aÞ
2

nþ ðbþaÞ
2
. Let

� ¼ b�a
L and d ¼ bþa

L . The Fourier finite sum using the variable n is
fN ðxsðnÞÞ ¼
XN2�1

k¼�N
2

~f ke
ipkð�nþdÞ. ð39Þ
Now we define the Gegenbauer coefficients in each subdomain
bXs
n ¼ 1

han

Z 1

�1

ð1� n2Þa�
1
2Ca

nðnÞfNðxsðnÞÞdn. ð40Þ
Then, plugging (39) into (40) and using the explicit formula (36) for the integration part, we denote:
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For k 6¼ 0; BXs

n;k ¼
eipkd

han

Z 1

�1

ð1� n2Þa�
1
2Ca

nðnÞeipk�n dn ¼ eipkdCðaÞ 2

kp�

� �a

inðnþ aÞJnþaðk�pÞ;

For k ¼ 0; BXs

n;k ¼ dnk.

ð41Þ
Then, the local Gegenbauer coefficients are expressed in a matrix form
bXs
0

bXs
1

�
�
bXs
M

2
6666664

3
7777775
¼

BXs

0;�N
2

BXs

0;�N
2þ1

. . . BXs

0;N2�1

BXs

1;�N
2

BXs

1;�N
2þ1

. . . BXs

1;N2�1

� � . . . �
� � . . . �

BXs

M ;�N
2

BXs

M ;�N
2

. . . BXs

M ;N2�1

2
66666664

3
77777775

~f �N
2

~f �N
2 þ1

�
�

~f N
2�1

2
66666664

3
77777775
.

Next, we evaluate the point values in each subdomain as follows. Let xs ¼ fxsi ; . . . ; xsjg be a subset of fxjgN�1
j¼0 ,

which is in Xs. We use the cost-effective version of the Gegenbauer reconstruction technique that defines the
Gegenbauer polynomials in terms of trigonometric functions [1,3,24]. In this case, for xs = cosh, we have:
Ca
nðcos hÞ ¼

Xn
m¼0

aam;n cosðn� 2mÞh ð42Þ
and
aam;n ¼
Cðaþ mÞCðaþ n� mÞ

m!ðn� mÞ!C2ðaÞ
; ð43Þ
where C is the gamma function. Define T s
i;m ¼ cos½mðcos�1niÞ� for ni ¼ 2

b�a x
s
i � bþa

b�a. Note that the Gegenbauer
coefficients are newly computed in each subdomain and that the reconstructed point values, denoted by gXs

i , on
grid set xs in each subdomain are obtained by
gXs
i

�
�
�
�
gXs
j

2
6666666664

3
7777777775
¼

T s
i;0 T s

i;1 . . . T s
i;M

� � . . . �
� � . . . �
� � . . . �
� � . . . �

T s
j;0 T s

j;1 . . . T s
j;M

2
666666664

3
777777775

aa00 0 aa12 0 . . . aaM
2 ;M

0 2aa01 0 2aa13 . . . 0

0 0 2aa02 0 . . . 0

� � 0 � . . . 2aa1M
� � � 0 . . . 0

0 0 0 0 0 2aa0M

2
6666666664

3
7777777775

bXs
0

bXs
1

�
�
�
bXs
M

2
666666664

3
777777775
.

Let Ns be the number of the elements in xs and D the number of discontinuities. Then the first Ns · (M + 1)
matrix in the right-hand side of the equation above is denoted by Ts and the second (M + 1) · (M + 1) matrix
by As. Then
gs ¼ TsAsbs; ð44Þ

where gs ¼ ½gXs

i ; . . . gXs
j �T and bs ¼ ½bXs

0 ; bXs
1 ; . . . ; bXs

M �T. The number of operations for the matrix–vector multipli-

cation Asbs is ðMþ2ÞðMþ4Þ
4

. However, one has to compute this procedure for each subdomain, so the amount of
work for this procedure is MS ¼

PS
s¼1

ðMsþ2ÞðMsþ4Þ
4

, where S (PD) stands for the number of subdomains. After
multiplication with Ts, the total amount of work is NsðMsþ2ÞðMsþ4Þ

4
in each subdomain. Thus, denoted by

Mmax = max{Ms}, for Mmax = bN, (0 < b < 1) (i.e., proportional to N), the total cost is Oð1
4
bðSbþ 4ÞN 2Þ.

On the other hand, the conventional recurrence formula [1,3] costs O(3SbN2).
In summary, the reconstruction procedure in one dimension is as follows:

Step 1. Compute the first M + 1 discrete Gegenbauer coefficients (40) in a subdomain.
Step 2. Construct the Gegenbauer finite sum (44) on the grids in the subdomain.
Step 3. Repeat Step 1 and Step 2 in the remaining subdomains, separately.

To show how the method performs with exponential convergence, we demonstrate some computational re-
sults for the following examples.
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Example 1. Consider the following discontinuous function, and assume that we are given N = 256 and
N = 512 discrete Fourier coefficients, as defined in (27), for each function:8
f1ðxÞ ¼
x3 � x2 þ 2 ð�1 6 x 6 � 1

2
Þ;

x2 þ 5 ð� 1
2
6 x 6 1

2
Þ;

x3 � 2 ð1
2
6 x 6 1Þ.

><
>: ð45Þ
Fig. 2 shows the Fourier approximations, their reconstructed results, and the pointwise errors for the func-
tions. For discontinuous functions, the standard Fourier approximation gives only Oð1NÞ convergence away
from the discontinuities and O(1) convergence near the discontinuities, as shown in the error plots as dashed
lines. Reconstructions are carried out for the function with three subdomains whose interfaces are indicated by
the vertical dotted lines. In the error plot, the parameters M and a are assigned as proportional to OðN 1

3Þ; that
is,M = 6, a = 6 in each subdomain for a fixed N = 256 (dotted line) and M = 8, a = 8 for N = 512 (solid line).
With other parameters M and a proportional to OðN 1

pÞ, p = 2, . . . ,8, the accuracy was successfully improved
compared to the Fourier result (dashed line).

Example 2. Consider the following piecewise analytic function f2(x), and assume that we are given only
N = 256 and N = 512 discrete Fourier coefficients:8
f2ðxÞ ¼

ðxþ 0:43Þ2 ð�1 6 x < �0:43Þ;
40ðxþ 0:43Þ2 ð�0:43 6 x < �0:33Þ;
10ðxþ 0:23Þ2 ð�0:33 6 x < �0:23Þ;
�5ðx2 � 0:0529Þ ð�0:23 6 x < 0:23Þ;
�5ðx� 0:23Þ2 ð0:23 6 x < 0:33Þ;
�30ðx� 0:43Þ2 ð0:33 6 x < 0:43Þ;
0:5ðx� 0:43Þ2 ð0:43 6 x 6 1Þ.

>>>>>>>>>>>><
>>>>>>>>>>>>:

ð46Þ
Fig. 2 shows the Fourier approximation, its reconstructed result, and the pointwise errors. Reconstructions
are carried out with seven subdomains whose interfaces are indicated by the vertical dotted lines. For the Fou-
rier data with N = 256, parameters are chosen asM ¼ OðN 1

5Þ ¼ 3 and a ¼ OðN 1
4Þ ¼ 4, whose pointwise error is

shown with a dotted line. The errors for the small subdomains around the singularities shows only 1-digit
accuracy in the maximum norm for the case with N = 256. For the Fourier data with N = 512, parameters
are chosen as M ¼ OðN 1

4Þ ¼ 4 and a ¼ OðN 1
3Þ ¼ 8, whose pointwise error is shown with a solid line. The errors

for the small subdomains around the singularities decay with 4-digit accuracy in maximum norm when the
resolution is as large as N = 512. In the cases N = 256 with other parameters for the small subdomains around
the singularities, the parameters could be chosen as M = 2 with a = 2, 3, 4, 6, 16, M = 3 with a = 3, 4, 6, and
M = 4 with a = 4, 6; these cases all successfully improved the accuracy compared to the Fourier result, at least
with more than 1-digit accuracy in the maximum norm. However, M ¼ OðN 1

pÞ; p ¼ 2; 3 with any
a ¼ OðN 1

qÞ; q P 2 does not improve the O(1) accuracy of the Fourier approximation.

Remark 1. From Examples 1 and 2, we observe that for desired reconstructions with at least 1-digit accuracy
in maximum norm, the size of the smallest subdomain restricts the range of M, which we empirically set to be
proportional to OðN 1

pÞ; p P 2. Accordingly, we set a to be proportional to OðN 1
pÞ. For the application prob-

lem in this paper with no analytic solution, we will choose the parameters in a similar manner. Within the nar-
rower range for M and a, we choose a relatively good solution from among the reconstructed solutions. We
leave as future work intensive study on the regular pattern for the relation in parameters with an automatic
measure for the quality of reconstructed solutions.

Remark 2. Reconstructions require computing the Gegenbauer coefficients in each subdomain. We first exam-
ine the computation time to obtain a set of the (M + 1) Gegenbauer coefficients with N Fourier data in a single
subdomain. Fig. 3 shows the cases ofM = 1, . . . ,20 forN = 32, 64, 128, 256 for a fixed a = 1with solid lines. The-
oretically, the computation time does not depend on the increasement with a. In our computational implemen-
tation, for different a, the CPU time is scaled by a small constant number when a increases. For example, the case
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with a = 20 is shown with dashed lines in Fig. 3. One can estimate the total reconstruction time as follows. If the
CPU time to performaone-subdomain reconstruction is ssM ;N , then the total cost to perform this reconstruction in
the global domain is

PS
s¼1s

s
M ;N , which is in fact proportional to the time obtainedbymultiplying the number of the

subdomains to the maximum of the subdomain reconstruction CPU times, that is, sS, where s ¼ maxsfssM ;Ng.
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4.2. Reconstructions in two dimensions

In this section, we extend the use of the cost-effective version of the Gegenbauer reconstruction technique
to two-dimensional problems. The Gegenbauer finite sum in two dimensions has the following form. For
x = coshx, y = coshy in a domain X = [�1,1]2, denoting a = (ax,ay), M = (Mx,My) and N = (Nx,Ny), we
have
gaM;Nðx; yÞ ¼
XMx

mx¼0

XMy

my¼0

bamx;my
Cax

mx
ðxÞCay

my
ðyÞ. ð47Þ
The coefficients bamx;my
for the Gegenbauer finite sum in two dimensions are defined by
bamx;my
¼ 1

haxmx
haymy

Z 1

�1

Z 1

�1

ð1� x2Þax�
1
2ð1� y2Þay�

1
2Cax

mx
ðxÞCay

my
ðyÞfN ðx; yÞdxdy. ð48Þ
Consider the computational domain [0,Lx] · [0,Ly], and define a set of grids x̂i ¼ L̂i
Nx

ð̂i ¼ 0; . . . ;Nx � 1Þ and
yĵ ¼ Lĵ

Ny
ð̂j ¼ 0; . . . ;Ny � 1Þ. Now, assume that the point values f ðxî; yĵÞ are known but the function f(x,y) is

not. Then the discrete Fourier coefficients ~f kx;ky ;� N
2
6 kx; ky 6 N

2
� 1 (for N = Nx = Ny) are obtained by
~f kx;ky ¼
XN�1

î¼0

XN�1

ĵ¼0

f ðx̂i; yĵÞe�i2pkxLx
x̂ie

�i
2pky
Ly

yĵ ; ð49Þ
and the two-dimensional Fourier finite sum everywhere in X = [0,Lx] · [0,Ly] is
fN ðx; yÞ ¼
XN2�1

kx¼�N
2

XN2�1

ky¼�N
2

~f kx;kye
i2pkxLx

xe
i
2pky
Ly

y
. ð50Þ
Let us denote a subdomain by Xs,t = [ax,bx] · [ay,by], where ax and bx are the known discontinuities in the
x-direction and ay and by in the y-direction. Define local variables for n,g 2 [�1,1] · [�1,1],
xs ¼ ðbx�axÞ

2
nþ ðbxþaxÞ

2
and yt ¼ ðby�ay Þ

2
gþ ðbyþay Þ

2
. Let �x ¼ bx�ax

Lx
, dx ¼ bxþax

Lx
, �y ¼ by�ay

Ly
, and dy ¼ byþay

Ly
. Then the

Fourier finite sum in the subdomain Xs,t is expressed by
fN ðxsðnÞ; ytðgÞÞ ¼
XN2�1

kx¼�N
2

XN2�1

ky¼�N
2

~f kx;kye
ipkxð�xnþdxÞeipky ð�ygþdy Þ. ð51Þ
Plugging (49) into (51), we have
fN ðxsðnÞ; ytðgÞÞ ¼
XN2�1

ky¼�N
2

XN�1

ĵ¼0

XN2�1

kx¼�N
2

XN�1

î¼0

f ðxî; yĵÞe�i2pkxLx
x̂i

 !
eipkxx

sðnÞ

2
4

3
5e�i

2pky
Ly

yĵeipkyy
tðgÞ

¼
XN2�1

ky¼�N
2

XN�1

ĵ¼0

fNðxsðnÞ; yĵÞe
�i

2pky
Ly

yĵ

0
@

1
Aeipkyy

tðgÞ ð52Þ
and the Gegenbauer coefficients in the subdomain Xs,t have the form
bXs;t
mx;my

¼ 1

haymy

Z 1

�1

ð1� y2Þay�
1
2Cay

my
ðgÞ

XN2�1

ky¼�N
2

XN�1

ĵ¼0

bXs
my
ðmx; yĵÞe

�i
2pky
Ly

yĵ

0
@

1
Aeipkyy

tðgÞ

2
4

3
5dg; ð53Þ
where
bXs
my
ðmx; yĵÞ ¼

1

haxmx

Z 1

�1

ð1� n2Þax�
1
2Cax

mx
ðnÞfN ðxsðnÞ; yĵÞdn. ð54Þ
Then, for a fixed yĵ, the one-dimensional Gegenbauer reconstruction in the x-direction is written as
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g
Xs;t
Mx

ðxsðnÞ; yĵÞ ¼
XMx

mx¼0

bXs
my
ðmx; yĵÞCax

mx
ðnÞ. ð55Þ
The two-dimensional reconstruction form is
gaM ;N jXs;t
¼ gXs;tðxsðnÞ; ytðgÞÞ ¼

XMy

my¼0

bXs;t
mx;my

Cay
my
ðgÞ; ð56Þ
where
bXs;t
mx;my

¼ 1

haymy

Z 1

�1

ð1� y2Þay�
1
2Cay

my
ðgÞ

XN2�1

ky¼�N
2

XN�1

ĵ¼0

g
Xs;t
Mx

ðxsðnÞ; yĵÞe
�i

2pky
Ly

yĵ

0
@

1
Aeipkyy

tðgÞ

2
4

3
5dg.
Then the local Gegenbauer coefficients are given in matrix form as
bXs;t ¼ BXt

y
~f BXs

x

� �T
; ð57Þ
where bXs;t ¼ ½bXs;t
mx;my

�, ~f ¼ ½~f ky ;kx �, B
Xs

x ¼ ½BXs

mx ;kx
�, and BXt

y ¼ ½BXt

my ;ky
�, as defined in (42). Finally, the two-dimen-

sional Gegenbauer reconstruction can be summarized in matrix form as follows:
gs;t ¼ ½Tt
yA

t
yðTs

xA
s
xb

Xs;tÞT�T ¼ Ts
xA

s
xðbXs;tÞðAt

yÞ
TðTt

yÞ
T
; ð58Þ
where gs;t ¼ ½gXs;t

î;̂j
�T, Ts

x ¼ ½T s
î;m� ¼ ½cosðmðcos�1nîÞÞ�, and Tt

y ¼ ½T t
ĵ;m� ¼ ½cosðmðcos�1gĵÞÞ� for nî ¼ 2

bx�ax
nsî � bxþax

bx�ax
,

and gĵ ¼ 2
by�ay

gt
ĵ
� byþay

by�ay
, respectively.

A practical way to perform the two-dimensional reconstruction is that we need to perform only the one-
dimensional procedure. The analysis program for the two-dimensional problem is the same as the one for
one-dimensional problem, with an outside ‘‘for’’ loop. We first perform a one-dimensional reconstruction,
say, in the x-direction. Obtaining one-dimensional Fourier data in the other direction (say in the y-direction),
we then perform a reconstruction in the other direction:

Step 1. Compute the one-dimensional discrete Fourier coefficients w.r.t. x for a yĵ.
Step 2. Compute the first M + 1 discrete Gegenbauer coefficients in a subdomain.
Step 3. Construct the Gegenbauer finite sum on the grids in the subdomain.
Step 4. Repeat Steps 2–3 in the remaining subdomains, separately, for the fixed yĵ.
Step 5. Repeat Steps 1–4 for each yĵ, and store all the data for the next step.
Step 6. Compute the one-dimensional discrete Fourier coefficients w.r.t. y for a xî.
Step 7. Repeat Steps 2–5 for all x̂i, separately.

5. Computational results

This section presents detailed numerical results obtained by the PSTD method and the Gegenbauer post-
processing of these results.

We focus on the local domain X =[640 nm, 895 nm] · [128 nm, 383 nm], the region within the dotted lines
of Fig. 1. Redefining the local domain X in a reference domain X̂ ¼ ½�128 nm; 127 nm� � ½�128 nm; 127 nm�,
Fig. 4 displays, as dashed lines, the interfaces for the various subdomains within X in our Gegenbauer recon-
structions and the solid lines indicate representative lines (not interfaces) along y with x held fixed at x = x0,
and along x with y held fixed at y = y0. The horizontal line along x with y = y0 involves five subdomains; two
subdomains corresponding to x-values to the left of the circle, a subdomain corresponding to x-values within
the circle, and two subdomains corresponding to x-values to the right of the circle. Similar remarks hold for
the subdomains along the vertical solid line at x = x0. On the other hand, solid lines along x or y that do not
cross the circle involve three subdomains.

We first discuss time snapshots of the field components Ex and Ey, Figs. 5–8. For generating the time snap-
shots, a sinusoidal wave hard source with frequency x0 ¼ 2pc

k0
corresponding to k0 = 340 nm, modulated by a



y=y
0

x=x
0

Fig. 4. Subdomains of a reference domain, X̂ ¼ ½�128 nm; 128 nm� � ½�128 nm; 128 nm�, for the two-dimensional metal cylinder
problem. The dashed lines are the interfaces of the subdomains, with the dashed circle corresponding to the metal cylinder boundary. The
solid lines are representative lines along x and y for analyses in one-dimensional cuts. x0 = �128 nm + iDx, i = 0, . . . ,N � 1 and
y0 = �128 nm + jDy, j = 0, . . . ,N � 1.

Fig. 5. Snapshots of Ex at time = 11.48e � 15 s with Dt = 1.3514e � 18. From the left, PSTD solution (7669.9 s) and Gegenbauer
reconstruction (164.40 s).
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17.5 fs. Blackman–Hariss window, is employed. This source is implemented at each field point along the
source line depicted in Fig. 1 using the compact source approach in [22]. Overall, the incident wave generated
from this source condition corresponds to an ultrashort laser pulse.

To ensure the numerical stability in time, we used [10,21,25]
Dt <
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�min=�0

p
pc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=Dx2 þ 1=Dy2

p ; ð59Þ
where �min = min{�0,�0�1}.
The snapshots in Figs. 5–8 were generated with spatial grid spacings Dx = Dy = 1 nm, corresponding to

Nx = 1024, Ny = 512. The local domain defined by X represents a 256 · 256 cutout of the larger 1024 · 512
grids. The time step used was Dt = 1.3514 · 10�18 s, and the snapshots are at time = 11.48 · 10�15 s, which
corresponds to a time such that the major part of the pulse is interacting with the metal cylinder.

In Figs. 5–8, the left-side figures are the PSTD results and the right-side figures are the Gegenbauer post-
processed results. Figs. 6 and 8 show particular cuts along x and y of the results in Figs. 5 and 7. Nonphysical
oscillations are evident in Figs. 5–8 for the PSTD results throughout the region of the cylinder and near this
region. The Gegenbauer reconstructed results were carried out based on particular parameter choices for the
Gegenbauer parameters, M and a, which may be different in each of the subdomains defined in Fig. 4. In
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Fig. 7. Snapshots of Ey at time = 11.48 e � 15 s with Dt = 1.3514e � 18. From the left, PSTD solution (7669.9 s) and Gegenbauer
reconstruction (164.79 s).
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Section 6, we outline an empirical procedure we found useful for choosing the parameters in each subdomain.
Figs. 5–8 show that our Gegenbauer postprocessing technique successfully improves the PSTD results by elim-
inating all the nonphysical oscillations.

It is worthwhile to remark on the computational time associated with the reconstructions. For the snapshot
calculations of Figs. 5–8, the PSTD simulation required approximately 2 h CPU time on an AMD Athlon
1 GHz. The cost-effective Gegenbauer reconstruction required less than 3 min, which is irrelevant in compar-
ison to the simulation time.

In Figs. 9–11, we demonstrate the absolute magnitudes of frequency-domain field components, which are
obtained by
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Fig. 9. Frequency-domain electric field magnitude in the X domain, j~Ej, corresponding to k0 = 340 nm: PSTD (left) and Gegenbauer
(middle) with Dx = Dy = 0.5 nm and FDTD (right) with Dx = Dy = 0.1 nm.
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~Eðx; y;x0Þ ¼
Z 1

0

eix0tEðx; y; tÞdt. ð60Þ
These field magnitudes can be interpreted as time-averaged field magnitudes, and are often the main focus in
applications. We consider a frequency x0 ¼ 2pc

k0
, corresponding to k0 = 340 nm, although numerous other fre-

quency components can be used.
In principle, one can evaluate Eq. (60) with time-domain results such as those discussed in Figs. 5–8. Accu-

rate frequency-resolved results, however, involve a Fourier transformation over longer times than those of the
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Fig. 11. One-dimensional slices in y-direction (with x = 13 nm) of the frequency-domain electric field magnitude, j~Ej, corresponding to
k0 = 340 nm: PSTD (left) and Gegenbauer (middle) with Dx = Dy = 0.5 nm, and FDTD (right) with Dx = Dy = 0.1 nm.

M.-S. Min et al. / Journal of Computational Physics 213 (2006) 730–747 745
snapshots, necessitating some care in the choice of initial conditions. In PSTD simulations, it is possible for
waves that are reflected off the metal cylinder to reach the source and be artificially reflected back into the
physical domain. The pulse width and final time should be chosen so that no such contamination occurs in
the evaluation of Eq. (60) for the domain of interest, X. The particular initial source employed for the snap-
shots violates this requirement for the longer times of relevance here. We therefore used a shorter (4.3 fs)
Blackman–Hariss window which did not lead to any back reflection errors in X.

Figs. 9–11 display some of our frequency-domain results. The PSTD results in the left-most panel of each
figure were generated with a finer grid resolution, Dx = Dy = 0.5 nm. The central panel of each figure is the
Gegenbauer reconstructed results. Due to the factor of two smaller grid spacings, the grid points within the
local domain X are 512 · 512 for the Gegenbauer reconstructions. The right-most panel in each figure is
the result of FDTD simulation with Dx = Dy = 0.1 nm. The very fine resolution of the FDTD simulation im-
plies, apart from its behavior close to the metal/air interfaces, that this result should be very accurate (FDTD
results with 0.2 nm resolution agree well with the 0.1 nm results, apart from the immediate vicinity of the me-
tal/air boundaries).

Figs. 9–11 show that Gegenbauer reconstruction results are very close to the FDTD results. Thus, one can
employ a grid spacing in the PSTD simulation that is five times larger than the one used for FDTD simulation,
and obtain results in agreement with the finer resolution FDTD simulation, excluding the interface bound-
aries. Indeed, our reconstructed results very close to the metal/air interface are also physically more accept-
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able, whereas the FDTD results exhibit the spurious downward spikes near the metal/air interface. The res-
olution Dx = Dy = 0.5 nm with PSTD simulation was required for the reconstructions to have good agree-
ment to the FDTD results with the resolution of 0.1 nm.

6. Discussion

The Gegenbauer reconstruction in each subdomain requires estimates for the parameters M and a. From
[13], we can expect that there is a range of parameters that gives good reconstructed results. Based on the
numerical results in the previous sections, we outline an empirical procedure for identifying suitable parameter
values. First, we restrict M and a to be OðN 1

pÞ; p P 2. For example, for N = 256, of relevance to the snapshot
calculations of the previous section, we have a set P = {1, 2, 3, 4, 6, 16}. Next, we choose the value of M from
P to be proportional to the size of the relevant subdomain. The parameter a is then varied to obtain a smooth,
physically acceptable result. Based on direct visual inspection of the results, we find that for subdomains
involving large field variations, e.g. the regions near the metal/air interfaces, a � M yields the best results,
whereas for subdomains with smooth field variations any a2P is generally adequate.

For this reconstruction approach to become a robust practical tool, more automated algorithms for choos-
ing M and a are required. This will involve the development of quantitative measures of the goodness of a
reconstruction with particular M and a in comparison with other choices. It is possible that the smoothness
indicators adapted from WENO method [29] could be of use, and the idea will be further discussed in a future
paper.

7. Conclusion

We have presented a cost-effective Gegenbauer reconstruction technique applicable when one has a priori
knowledge of the problem discontinuities. In one dimension, exponential convergence of the Gegenbauer
reconstructions was demonstrated for a nonperiodic and some piecewise analytic functions. We extended
the method to two dimensions and applied it as a postprocessing to the oscillatory Fourier pseudospectral
solutions, which simulate electromagnetic waves interacting with a metallic nanowire where strong surface
plasmon excitations can occur. Successful reduction of the oscillations in Fourier pseudospectral solutions
is obtained after the Gegenbauer reconstructions. Comparisons of the reconstructed results to a finer resolu-
tion FDTD result are also provided. The Gegenbauer reconstructions provide reasonable profiles of the field
response up to the metal surface, in contrast with the-finer resolution FDTD results.

Seeking an automated parameter-optimizing reconstruction method is an important goal for future work.
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